Rules & guidelines for Scala functions

Scala provides an embarrassing variety of ways to define and call functions. A lot of the variety exists just for the writers of internal
DSLs. Here are some of the pieces at our disposal.

Functions with no, 0, or 1 parameter(s)

Rules / Guidelines Example Notes

A parameterless function defines no
parameters (using no parentheses). It
must be called with no parentheses.
Scala style says that the function
should be purely functional (no side
effects).

def one = "The loneliest number"

A zero-parameter function defines

zero parameters (using parentheses).

It may be called with or without

parentheses. Scala style says that def two() = one + " since the number one"
calling the function without

parentheses means it is purely

functional (no side effects).

A one-parameter function defines one
parameter (using parentheses). It def —(value: Boolean) = !value
must be called using parentheses.

Variables, values, and functions

Rule / Guideline Example Notes

val binds a value to a name.

The expression is evaluated only val test_val
once, when the name is defined.

{printin("defining test"); 3}

def defines a function.

The body is evaluated every time def test_def
the function is called.

{println("defining test"); 3}

lazy val binds a value to a name.

The expression is evaluated only lazy val test_val = {println("defining test"); 3}
once, when the name is first used.

By-name parameters

Rule / Guideline

Example

Notes

A by-name parameter (defined by
placing = before the type)

evaluates its argument every time
the parameter is used (but not until
the first time it’s used).

A one-parameter function can be
called using braces instead of
parentheses. Scala style says we
should do so only if it’s a by-name
parameter.

def printThenResult(b: Boolean) = {
println("You called?")
b

def doAndByValue(b: Boolean) = false && b

def doAndByName(b: =Boolean) = false && b

doAndByName{true}

Method calls

Not part of functional programming, but it’'s good to know this info.

Rule / Guideline Example Notes
Methods can be called using
infix notation by omitting the dot
between the receiver and the 0 to(10)
method. 0 to (10)
Watch out though! This feature 0 to 10
doesn'’t always play well with other
features.
Anonymous functions
Rule / Guideline Example Notes
(-5 to 5).filter((x: Int) => x > 0)
There are so many ways to define (-5 to 5).filter((x) => x > 0)
and call anonymous functions. (=5 to 5).filter(x => x > @)
Scala style generally says to
choose the shortest way possible. (-5 to 5).filter(_ > 0)
(-5 to 5) filter (_ > 0)

Partial functions & curried functions

Rule / Guideline Example Notes

Partial functions: If we want to
use a function as a value, we can’t .
usually refer to its name. We have (=5 to 5).filter

to use _ to partially apply it. (=5 to 5).filter
The exception is when the function B
is an argument to another function.

Curried functions: Functions that def sum3c(x: Int)(y: Int)(z: Int) = x +y + 2
are rr_1eant to be called by chaining ¢ /3 (10) (20) (30)
function calls.

