
Rules & guidelines for Scala functions
Scala provides an embarrassing variety of ways to define and call functions. A lot of the variety exists just for the writers of internal
DSLs. Here are some of the pieces at our disposal.

Functions with no, 0, or 1 parameter(s)
Rules / Guidelines Example Notes

A parameterless function defines no
parameters (using no parentheses). It
must be called with no parentheses.
Scala style says that the function
should be purely functional (no side
effects).

def one = "The loneliest number"

A zero-parameter function defines
zero parameters (using parentheses).
It may be called with or without
parentheses. Scala style says that
calling the function without
parentheses means it is purely
functional (no side effects).

def two() = one + " since the number one"

A one-parameter function defines one
parameter (using parentheses). It
must be called using parentheses.

def ¬(value: Boolean) = !value

Variables, values, and functions

Rule / Guideline Example Notes

val binds a value to a name.  
The expression is evaluated only
once, when the name is defined.

val test_val = {println("defining test"); 3}

def defines a function.  
The body is evaluated every time
the function is called.

def test_def = {println("defining test"); 3}

lazy val binds a value to a name.  
The expression is evaluated only
once, when the name is first used.

lazy val test_val = {println("defining test"); 3}

By-name parameters

Rule / Guideline Example Notes

A by-name parameter (defined by
placing ⇒ before the type)
evaluates its argument every time
the parameter is used (but not until
the first time it’s used).

def printThenResult(b: Boolean) = {
 println("You called?")
 b
}

def doAndByValue(b: Boolean) = false && b

def doAndByName(b: ⇒Boolean) = false && b

A one-parameter function can be
called using braces instead of
parentheses. Scala style says we
should do so only if it’s a by-name
parameter.

doAndByName{true}

Method calls
Not part of functional programming, but it’s good to know this info.

Anonymous functions

Rule / Guideline Example Notes

Methods can be called using  
infix notation by omitting the dot
between the receiver and the
method.

Watch out though! This feature
doesn’t always play well with other
features.

0 to(10)

0 to (10)

0 to 10

Rule / Guideline Example Notes

There are so many ways to define
and call anonymous functions.
Scala style generally says to
choose the shortest way possible.

(-5 to 5).filter((x: Int) => x > 0)

(-5 to 5).filter((x) => x > 0)

(-5 to 5).filter(x => x > 0)

(-5 to 5).filter(_ > 0)

(-5 to 5) filter (_ > 0)

Partial functions & curried functions
Rule / Guideline Example Notes

Partial functions: If we want to
use a function as a value, we can’t
usually refer to its name. We have
to use _ to partially apply it.
The exception is when the function
is an argument to another function.

(-5 to 5).filter

(-5 to 5).filter _

Curried functions: Functions that
are meant to be called by chaining
function calls.

def sum3c(x: Int)(y: Int)(z: Int) = x + y + z

sum3c(10)(20)(30)

